数据结构:并查集
前言
用于解决动态连通性问题,能动态连接两个点,并且判断两个点是否连通。
方法 | 描述 |
---|---|
UF(int N) | 构造一个大小为 N 的并查集 |
void union(int p, int q) | 连接 p 和 q 节点 |
int find(int p) | 查找 p 所在的连通分量编号 |
boolean connected(int p, int q) | 判断 p 和 q 节点是否连通 |
public abstract class UF { protected int[] id; public UF(int N) { id = new int[N]; for (int i = 0; i < N; i++) { id[i] = i; } } public boolean connected(int p, int q) { return find(p) == find(q); } public abstract int find(int p); public abstract void union(int p, int q); }
Quick Find
可以快速进行 find 操作,也就是可以快速判断两个节点是否连通。
需要保证同一连通分量的所有节点的 id 值相等,就可以通过判断两个节点的 id 值是否相等从而判断其连通性。
但是 union 操作代价却很高,需要将其中一个连通分量中的所有节点 id 值都修改为另一个节点的 id 值。
public class QuickFindUF extends UF { public QuickFindUF(int N) { super(N); } @Override public int find(int p) { return id[p]; } @Override public void union(int p, int q) { int pID = find(p); int qID = find(q); if (pID == qID) { return; } for (int i = 0; i < id.length; i++) { if (id[i] == pID) { id[i] = qID; } } } }
Quick Union
可以快速进行 union 操作,只需要修改一个节点的 id 值即可。
但是 find 操作开销很大,因为同一个连通分量的节点 id 值不同,id 值只是用来指向另一个节点。因此需要一直向上查找操作,直到找到最上层的节点。
public class QuickUnionUF extends UF { public QuickUnionUF(int N) { super(N); } @Override public int find(int p) { while (p != id[p]) { p = id[p]; } return p; } @Override public void union(int p, int q) { int pRoot = find(p); int qRoot = find(q); if (pRoot != qRoot) { id[pRoot] = qRoot; } } }
这种方法可以快速进行 union 操作,但是 find 操作和树高成正比,最坏的情况下树的高度为节点的数目。
加权 Quick Union
为了解决 quick-union 的树通常会很高的问题,加权 quick-union 在 union 操作时会让较小的树连接较大的树上面。
理论研究证明,加权 quick-union 算法构造的树深度最多不超过 logN。
public class WeightedQuickUnionUF extends UF { // 保存节点的数量信息 private int[] sz; public WeightedQuickUnionUF(int N) { super(N); this.sz = new int[N]; for (int i = 0; i < N; i++) { this.sz[i] = 1; } } @Override public int find(int p) { while (p != id[p]) { p = id[p]; } return p; } @Override public void union(int p, int q) { int i = find(p); int j = find(q); if (i == j) return; if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; } else { id[j] = i; sz[i] += sz[j]; } } }
路径压缩的加权 Quick Union
在检查节点的同时将它们直接链接到根节点,只需要在 find 中添加一个循环即可。
比较
算法 | union | find |
---|---|---|
Quick Find | N | 1 |
Quick Union | 树高 | 树高 |
加权 Quick Union | logN | logN |
路径压缩的加权 Quick Union | 非常接近 1 | 非常接近 1 |